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Abstract. In generalized fractional programming, one seeks to minimize the maximum of a finite
number of ratios. Such programs are, in general, nonconvex and consequently are difficult to solve.
Here, we consider a particular case in which the ratio is the quotient of a quadratic form and a positive
concave function. The dual of such a problem is constructed and a numerical example is given.
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1. Introduction

We consider a mathematical program of the form

(P): inffmaxfQi(x)=fi(x) : i 2 Ig : Cx � bg

with C some m � n-matrix b 2 Rm a given vector, Qi(x) = 1=2xTAix, Ai

positive definite and fi : Rn ! R a strictly positive concave function. Moreover,
I represents a finite index set.

Program P is generally referred to as a generalized fractional program and is
generally nonconvex. It has been studied extensively in the case for which Qi(x),
i 2 I are arbitrary positive convex functions. For a recent review, see Schaible
(1995) in which a full discussion of theory, duality, applications and algorithms has
been included. An example of the above formulation in location-allocation with
congestion effects has been given by Barros (1995).

In this paper we focus on the numerator functions being a quadratic form and
on the concept of duality. For arbitrary numerator functions, there are a variety
of approaches to finding a corresponding dual program involving quasiconcave
duality (Crouzeix et al., 1983), convex analysis (Jagannathan et al., 1983), and
conjugate functions (Scott et al., 1989). Alternative approaches have been given by
Bector and Suneja (1988), Boncompte and Martinez-Legaz (1991), and Chandra et
al. (1986). Jagannathan and Schaible (1983) show that a symmetric duality theory
can be established where the dual involves infinitely many ratios; with conjugate
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duals and fi(x) affine, it was shown by Scott and Jefferson (1989) that the dual
could be both symmetric and have finitely many ratios. Recent computational
results based on the dual program are given by Barros et al. (1996a, b). In this
paper, we show that a particularly simple dual involving a convex program with
one convex constraint results. The key to this simplicity comes from the fact that
the numerator being a quadratic form has a convex square root and hence the ratio is
a convex function (Bector, 1968). Consequently, Program (P) is a convex program
which is not true for arbitrary Qi(x). In the particular case that fi(�), i 2 I are
affine, the dual is a linear program with one quadratic constraint.

Section 2 derives the dual program to (P) as well as the optimality conditions
that relate the primal and dual programs. Section 3 completes the paper with a
numerical example.

2. Derivation of the dual program

Clearly the optimization problem (P) is equivalent to

infft : t�1
i Qi(x)� fi(x) � 0; i 2 I; t� ti = 0; i 2 I;

Cx � b; t > 0; ti > 0; i 2 Ig

Since Qi is a quadratic convex function (actually Qi(x) = 1=2kA1=2
i xk2

2 with
k � k2 denoting the Euclidean norm) it follows by Theorem 5.16 of Avriel et al.
(1988) that the function (x; ti)! t�1

i Qi(x) is convex on Rn � (0;1) and so (P)
is a convex programming problem. Penalizing the restrictions Cx� b � 0 by the
Lagrangian multiplier u 2 Rm

+ , the restrictions t�1
i Qi(x) � fi(x) � 0, i 2 I by

the Lagrangian multiplier �i � 0 and the restriction ti � t = 0, i 2 I , by the
Lagrangian multiplier �i 2 R we obtain for � := ((�i)i2I) and � := ((�i)i2I) the
Lagrangian function �(�; �; u) given by

inf

( 
1�

X
i2I

�i

!
t+

X
i2I

(�it
�1
i Qi(x) + �iti)

�
X
i2I

�ifi(x) + uT (Cx� b) : x 2 Rn; t > 0; ti > 0; i 2 I

)

= inf

( 
1�

X
i2I

�i

!
t : t > 0

)
+ inf

(X
i2I

(�it
�1
i Qi(x) + �iti)

�
X
i2I

�ifi(x) + uTCx : x 2 Rn; ti > 0

)
� uT b

= inf

( 
1�

X
i2I

�i

!
t : t > 0

)
+ inf

x

(X
i2I

inf
ti>0

f�it
�1
i Qi(x) + �itig

�
X
i2I

�ifi(x) + uTCx

)
� uT b
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It is easy to verify by the above expression for the Lagrangian function that the
effective domain of � is contained in

D :

(
(�; �; u) : � � 0; u � 0; �i � 0;

X
i2I

�i � 1

)

To compute the Lagrangian function for (�; �; u) 2 D we observe the following.
By elementary calculus it follows for every x 2 Rn that

inff�it
�1
i Qi(x) + �iti : ti > 0g = 2(�i�iQi(x))

1=2

and so for (�; �; u) 2 D we obtain

�(�; �; u) = inf

(
2

 X
i2I

(�i�iQi(x))
1=2

�
X
i2I

�ifi(x) + uTCx : x 2 Rn

)
� uT b

Since �i�i � 0 and Qi(x) = 1=2xTAix it follows that the function 
i : Rn ! R

given by 
i(x) := 2(�i�iQi(x))
1=2 is a finite nonnegative positively homoge-

neous convex function or equivalently a finite gauge. Denoting now by h� the
conjugate function of the function h, a shorthand notation for �(�; �; u) is given
by �(

P
i2I 
i +

P
i2I(��ifi))

�(�CTu) � uT b and this implies by the previous
observations and Theorem 6.4. of Rockafellar (1970) that

�(�; �; u) =

�min

(X
i2I


�i (y
�
i ) +

X
i2I

(��ifi)
�(x�i ) :

X
i2I

x�i +
X
i2I

y�i = �CTu

)
� uT b

Since 
i is a finite gauge it is well-known (see Theorem 13.2 and Corollary 13.2.1
of Rockafellar (1970)) that 
�i (y

�
i ) = �c(y

�
i ) with C:=@
i(0), the subgradient set

of 
i at 0, and �C (�) the indicator function of the set C. Hence for (�; �; u)2 D

the Lagrangian function is simplified to

�(�; �; u) = �min

(X
i2I

(��ifi)
�(x�i ) : y�i 2 @
i(0); i 2 I;

X
i2I

x�i +
X
i2I

y�i

= �CTu

)
� uT b

Due to 
i(x) = (2�i�i)
1
2 kA

1
2
i xk2 it follows by Example 3.2 of Chapter 6 of

Hiriart-Urruty and Lemaréchal (1993) that

@
i(0) = A
1
2
i B

�
0; (2�i; �i)

1
2

�
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with B(0; r): = fx 2 Rn : kxk2 � rg. This implies y�i 2 @
i(0) if and only if
y�Ti A�1

i y�i � 2�i�i and so for �(P ) finite and (LD) given by

supf�(�; �; u) : � � 0; u � 0;� 2 RjIjg (LD)

it follows by the strong Lagrangian duality theorem (see Theorem 28.2 of Rock-
afellar (1970)) that

�(P ) = �(LD) = �min f��(�; �; u) : (�; �; u) 2 Dg

= �min

(
uT b+

X
i2I

(��ifi)
�(x�i ) :

X
i2I

y�i +
X
i2I

x�i

= � CTu; y�Ti A�1
i y�i �2�i�i; i2I; ��0; ��0; u�0;

X
i2I

�i�1

)

Since the feasible region of the above problem is contained in (use convention
0=0 := 0 and �=0 =1 for � > 0).

F :=

(X
i2I

y�i +
X
i2I

x�i = �CTu;
X
i2I

��1
i y�i � 2; � � 0; u � 0

)
;

it follows that �(LD) � �minfuTn +
P

i2I (��ifi)
�(x�i ) : ((y�i )i2I ;

(x�i )i2I ; u; �) 2 Fg. Moreover, any feasible solution of the above problem can
be transformed to a feasible solution of the dual problem (LD) (take �i =
1=2��1

i y�Ti A�1
i y�i ) and this finally implies that

�(P ) = �min

(
uT b+

X
i2I

(��ifi)
�(x�i ) : ((y�i )i2I ; (x

�
i )i2I ; u; �) 2 F

)

We note that the dual program has a convex objective, one convex constraint, and a
set of linear constraints. Nonlinear programming algorithms generally prefer fewer
explicit nonlinear constraints as in the dual. The dual variables u are Lagrangian
multipliers on the primal polyhedral constraints and will satisfy a complementary
slackness condition. The dual is somewhat complicated by the multipliers �i, i 2 I .
For �i > 0 at optimality, the corresponding term ‘i’ in the primal objective will
determine the optimal primal value. However, since many of these terms will not
contribute to the objective value, their corresponding �i will be zero. The most
straightforward way to handle these positively homogeneous convex functions in
a computational algorithm is to add a constraint � � "; " > 0 so as to identify the
finite and zero components of �. A numerical example will illustrate the process.

The primal and dual variables are related at optimality in the following way:

x�i =�i"@fi(x) �i > 0 (1)

y�i =�i = ATx=t �i > 0 (2)
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uT (Cx� b) = 0 (3)

Max
i
fQi(x)=fi(x)g+ bTu+

X
i2I

(��ifi)
�(x�i ) = 0 (4)

Equation (4) represents the fact that the primal and dual objectives sum to zero at
optimality. Equation (3) is the usual complementary slackness condition and (1)
and (2) relate the dual variables x�i , y�i and � to the primal variable x. Collectively,
these results allow the primal/dual solution to be constructed from the dual/primal
solution.

We now particularize the results to f(�), an affine function and to the single
ratio case.

Case 1. Single Ratio Case N = 1
In this case, �(= �1) is strictly positive, which simplifies, in turn, the positively

homogeneous convex function in the constraints. The dual program is

min bTu+ (��f)�(x�)
s.t. x� + y� = �CTu

y�TA�1y� � 2�
u � 0; � > 0

as given previously by Scott and Jefferson (1996).

Case 2. f(�) is an affine function.
Here, fi(xi) = aTi x

i + ci and (��f)�(x�i ) = ci with xi = �ai. Consequently,
the dual program is

min bT +
X
i2I

ci�i

s.t.
X
i2I

(�ai�i + x�i ) = �CTuX
i2I

��1
i x�Ti A�1

i x�i � 2

u � 0; � � 0

In this case, we have a linear program with one convex constraint. A specialized
algorithm could be developed, along the lines of Martein and Schaible (1989), for
linear programs with one quadratic constraint or, alternatively, a general purpose
algorithm could be used.

3. A numerical example

Consider the following generalized fractional program:

min max

(
x2 + 2y2

2x+ 3y + 4
;

3x2 + 0:5y2

x+ 3y + 2
;

x2 + 6y2

x+ 0:5y + 1

)
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x; y

s.t. 12x+ 3y � 6 (5)

x+ y � 2 (6)

Using the prescription in Case 2 of Section 3, the dual program is

min �6u1 + 2u2 + 4�1 + 2�1 + �3

s.t. �2�1 � �2 � �3 + x11 + x21 + x31 = 12u1 � u2

�3�1 � 3�2 � 0:5�3 + x�12 + x�22 + x�32 = 3u1 � u2

��1
1

�
1
4
x�11 +

1
8
x�2

12

�
+ ��1

2

�
1

12
x�2

21 +
1
2
x�2

22

�

+��1
3

�
1
4
x�2

31 +
1

16
x�2

32

�
� 1

u1 � 0; u2 � 0; �i � 0:0001; i = 1; . . . ; 3:

Note that we have added a small lower bound on �; this allows us to simply
represent the positive homogeneous extension. Solving yields a dual objective
value of�0:2139 with multipliers �1 = 0:0001, �2 = 0:0476, �3 = 0:0467. Since
�1 is at its lower bound, the corresponding term in the primal objective will not
contribute to the primal objective. Hence we drop it from the model and resolve
the dual. In this case, the dual objective value is �0:2144 with dual variables

�2 = 0:0477 x�21 = 0:609 x�31 = 0:199
�3 = 0:0467 x�22 = 0:039 x�32 = 0:306
u1 = 0:059 u2 = 0:

Since the dual variable � is strictly greater than 0.0001, we now have the
optimal dual solution. Consequently the optimal primal value is t = 0:214 from
(4). Further, the optimal primal solution is from (2).

(x�21t)x =

�
= 0:456

(6�2)

(x�22t)y =

�
= 0:175

(�2)

Note that, since u1 > 0, constraint (5) is active while constraint (6) is inactive at
optimality.
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